مدل ساختاری تحلیل مولفه های نوین نیروی کار در صنعت خودرو با ملاحظه اینترنت اشیاء صنعتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده ی علوم اقتصادی و اداری، دانشگاه مازندران، بابلسر، ایران

2 استاد، گروه مدیریت صنعتی، دانشکده ی علوم اقتصادی و اداری، دانشگاه مازندران، بابلسر، ایران.

3 استادیار، گروه مدیریت صنعتی، دانشکده ی علوم اقتصادی و اداری، دانشگاه مازندران، بابلسر، ایران

10.22080/shrm.2023.4413

چکیده

امروزه با توجه به اهمیت استقرار اینترنت اشیاء در صنعت و پیشرفت روزافزون فناوری‌ها در این حوزه، بهره‌گیری از نیروی کار ماهر برای موفقیت صنایع ضروری می باشد. افزایش پیچیدگی فناوری ها مستلزم تمرکز بر معیارهای لازم برای مهارت ها و مشخصه‌های نیروی کار در حوزه ی اینترنت اشیاء صنعتی می باشد؛ لذا در این پژوهش سعی شده جهت بررسی کارآمدی نیروی کار، در اجرا و پذیرش اینترنت اشیاء صنعتی در صنعت خودرو، به شناسایی و بهره گیری از معیارهای ارزیابی و روابط ساختاری بین آنها پرداخته شود. بدین منظور بعد از مطالعه‌ی ادبیات تحقیق و استخراج معیارها، با استفاده از ارزیابی خبرگان که ده نفر از مدیران و کارکنان در حوزه‌ی صنعت خودرو بوده به وسیله‌ی تکنیک دلفی فازی معیارها بومی سازی شده است. در ادامه به وسیله تکنیک دیمتل تجدید نظر شده، روابط علی و معلولی معیارها مشخص شده، سپس با بکارگیری تکنیک مدل ساختاری تفسیری کل به سطح بندی معیارهای پرداخته شده است. برای تجزیه و تحلیل داده ها از نرم افزار MATLAB استفاده شده است. با توجه به نتایج به دست آمده معیارهای پشتیبانی مدیریت، هماهنگی و یکپارچگی فناوری، مهارت ارتباطی، رهبری، مدیریت ریسک و بحران و تجربه ی کاری مرتبط معیارهای علی می‌باشند و معیارهای سطح عملکرد کارکنان، ارزش و باور و فرهنگ کار، استفاده از تکنولوژی دیجیتال و انعطاف پذیری با تغییر شرایط، معیارهای معلول می باشند؛ بنابراین باید تمرکز لازم به معیارهای اثرگذار از سوی مدیران و صنایع برای پیاده سازی بهتر اینترنت اشیاء صنعتی صورت گیرد تا نتایج موثری به دست آورند.

کلیدواژه‌ها


عنوان مقاله [English]

Structural model in the analysis of new components of the workforce in the automotive industry with IIOT consideration

نویسندگان [English]

  • Maryam Taslimi 1
  • Abdolhamid Ghadikolaei 2
  • Mohammad Valipour Khatir 3
1 Master's degree, Faculty of Economic and Administrative Sciences, Mazandaran University, Babolsar, Iran
2 Professor, Department of Industrial Management, Faculty of Economic and Administrative Sciences, Mazandaran University, Babolsar, Iran.
3 Assistant Professor, Department of Industrial Management, Faculty of Economic and Administrative Sciences, Mazandaran University, Babolsar, Iran
چکیده [English]

Today, due to the importance of establishing the Internet of Things in the industry and the increasing progress of technologies in this field, the use of skilled workforce is necessary for the success of industries. The increasing complexity of technologies requires focusing on the necessary criteria for the skills and attributes of the workforce in the field of industrial Internet of Things.Therefore, in this research, in order to investigate the efficiency of the workforce in the implementation and acceptance of the Internet of Industrial Things in the automotive industry, the evaluation criteria and the structural relationships between them should be identified and used. For this purpose, after studying the research literature and extracting the criteria, the criteria have been localized using expert evaluation and the fuzzy Delphi Method. In following, the cause and effect relationships of the criteria have been identified by means of the Revised DEMATEL Method, then the leveling of the criteria has been done by using the Modified Total Interpretive Structural Model. MATLAB software was used for data analysis.According to the obtained results, the criteria of management support, communication skills, leadership, risk and crisis management and related work experience are causal criteria and the criteria of employee performance level, value and belief and work culture, use of digital technology and flexibility with Change of conditions are effect criteria; Therefore, managers and industries should focus on effective criteria for better implementation of industrial Internet of Things to achieve effective results.

کلیدواژه‌ها [English]

  • Industry‌‌4
  • Workforce in the Industrial Internet of Things
  • Automobile Industry in Iran
  • Revised DEMATEL Method
  • M-TISM
Apaydın, O., & Aladağ, Z. (2022). Ranking the evaluation criteria of Hi-Fi audio systems and constricted information space: A novel method for determining the DEMATEL threshold value. Applied Acoustics, 190, 108584.
Dombrowski, U., & Wagner, T. (2014). Mental strain as field of action in the 4th industrial revolution. Procedia Cirp, 17, 100-105..
Deflorin, P., Scherrer, M., & Schillo, K. (2021). The influence of IIoT on manufacturing network coordination. Journal of Manufacturing Technology Management, 32(6), 1144-1166.
Dursun, M., & Karsak, E. E. (2010). A fuzzy MCDM approach for personnel selection. Expert Systems with applications, 37(6), 4324-4330.
Dijkman, R. M., Sprenkels, B., Peeters, T., & Janssen, A. (2015). Business models for the Internet of Things. International Journal of Information Management, 35(6), 672-678.
Flynn, J., Dance, S., & Schaefer, D. (2017). Industry 4.0 and its potential impact on employment demographics in the UK. Advances in Transdisciplinary Engineering6, 239-244.
Gehrke, L., Kühn, A. T., Rule, D., Moore, P., Bellmann, C., Siemes, S., ... & Standley, M. (2015). A discussion of qualifications and skills in the factory of the future: A German and American perspective. VDI/ASME Industry4(1), 1-28.
Grami, M., Drashkar Yaqouti, B., & Reza Panah, M. (2019). Prioritizing capabilities of industrial Internet of Things in improving organizational processes. Scientific Andisheh Amad, 19(74), 57-86. (In Persian)
Huang, X., Craig, P., Lin, H., & Yan, Z. (2016). SecIoT: a security framework for the Internet of Things. Security and communication networks, 9(16), 3083-3094.
Javaid, M., Haleem, A., Singh, R. P., Rab, S., & Suman, R. (2021). Upgrading the manufacturing sector via applications of Industrial Internet of Things (IIoT). Sensors International, 2, 1-8.
Ji, P., Zhang, H. Y., & Wang, J. Q. (2018). A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Computing and Applications, 29(1), 221-234.  
Kazancoglu, Y., & Ozkan-Ozen, Y. D. (2018). Analyzing Workforce 4.0 in the Fourth Industrial Revolution and proposing a road map from operations management perspective with fuzzy DEMATEL. Journal of enterprise information management, 31(6), 891-907.
Karabasevic, D., Zavadskas, E. K., Stanujkic, D., Popovic, G., & Brzakovic, M. (2018). An approach to personnel selection in the IT industry based on the EDAS method. Transformations in Business & Economics, 17, 54-65.  
Karabasevic, D., Zavadskas, E. K., Turskis, Z., & Stanujkic, D. (2016). The framework for the selection of personnel based on the SWARA and ARAS methods under uncertainties. Informatica, 27(1), 49-65.
Karmakar, A., Dey, N., Baral, T., Chowdhury, M., & Rehan, M. (2019). Industrial internet of things: A review. international conference on opto-electronics and applied optics (optronix) (pp. 1-6). IEEE.
Kelemenis, A., & Askounis, D. (2010). A new TOPSIS-based multi-criteria approach to personnel selection. Expert systems with applications, 37(7), 4999-5008.
Khodabakhshi, M., & Mutlaq Arshtanabi, K. (2015). Development of supply chain management through the use of automation technology (automation) internet identification of objects in organizations and institutions. Scientific Andisheh Amad, 15(56), 107-125. (In Persian)
Koohang, A., Sargent, C. S., Nord, J. H., & Paliszkiewicz, J. (2022). Internet of Things (IoT): From awareness to continued use. International Journal of Information Management, 62. https://doi.org/10.1016/j.ijinfomgt.2021.102442
Lee, H. S., Tzeng, G. H., Yeih, W., Wang, Y. J., & Yang, S. C. (2013). Revised DEMATEL: resolving the infeasibility of DEMATEL. Applied Mathematical Modelling, 37(10-11), 6746-6757.
Liu, H. C., Qin, J. T., Mao, L. X., & Zhang, Z. Y. (2015). Personnel selection using interval 2‐tuple linguistic VIKOR method. Human Factors and Ergonomics in Manufacturing & Service Industries, 25(3), 370-384.
Lu, Y., Witherell, P., & Jones, A. (2020). Standard connections for IIoT empowered smart manufacturing. Manufacturing letters, 26, 17-20.
Malik, P. K., Sharma, R., Singh, R., Gehlot, A., Satapathy, S. C., Alnumay, W. S., ... & Nayak, J. (2021). Industrial Internet of Things and its applications in industry 4.0: State of the art. Computer Communications, 166, 125-139.
Matthyssens, P. (2019). Reconceptualizing value innovation for Industry 4.0 and the Industrial Internet of Things. Journal of Business & Industrial Marketing, 34(6), 1203-1209.
Mohammadi A, Beheshtifar M, Kazemi H. (2018). Designing an effective leadership model in AJA based on fuzzy Delphi technique. Military Management Quarterly, 19(76), 127-162. (In Persian)
Mukherjee, S., Baral, M. M., Chittipaka, V., Nagariya, R., & Patel, B. S. (2023). Achieving organizational performance by integrating industrial Internet of things in the SMEs: a developing country perspective. The TQM Journal, 36(1), 265-287.
O’Halloran, D., & Kvochko, E. (2015). Industrial internet of things: unleashing the potential of connected products and services. White Paper, in Collaboration with Accenture, 34.
Qin, J., Liu, Y., & Grosvenor, R. (2016). A categorical framework of manufacturing for industry 4.0 and beyond. Procedia cirp, 52, 173-178.
Rajan, R., Rana, N. P., Parameswar, N., Dhir, S., & Dwivedi, Y. K. (2021). Developing a modified total interpretive structural model (M-TISM) for organizational strategic cybersecurity management. Technological Forecasting and Social Change, 170, 120872.  
Romero, D., Bernus, P., Noran, O., Stahre, J., & Fast-Berglund, Å. (2016). The operator 4.0: Human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. IFIP International Conference on Advances in Production Management Systems, Springer, pp. 677-686.
Seetharaman, A., Patwa, N., Saravanan, A. S., & Sharma, A. (2019). Customer expectation from industrial internet of things (IIOT). Journal of Manufacturing Technology Management, 30(8), 1161-1178.  
Serpanos, D., & Wolf, M. (2018). Industrial internet of things. Internet-of-Things (IoT) Systems: Architectures, Algorithms, Methodologies, 37-54. doi.org/10.1007/978-3-319-69715-4_5
Sushil, S. (2012). Interpreting the interpretive structural model. Global Journal of Flexible Systems Management, 13(2), 87-106.  
Sushil, A. (2017). Modified ISM/TISM process with simultaneous transitivity checks for reduced direct pair comparisons. Global Journal of Flexible Systems Management, 18(4), 331-351.
Sushil. (2018). Incorporating polarity of relationships in ISM and TISM for theory building in information and organization management. International Journal of Information Management, 43, 38-51.  
Tzeng, G. H., Chen, W. H., Yu, R., & Shih, M. L. (2010). Fuzzy decision maps: a generalization of the DEMATEL methods. Soft Computing, 14(11), 1141-1150.
Vinodh, S., & Wankhede, V. A. (2020). Application of fuzzy DEMATEL and fuzzy CODAS for analysis of workforce attributes pertaining to Industry 4.0: a case study. International Journal of Quality & Reliability Management,38(8),1695-1721.  
Warfield, J. N. (1974). Toward interpretation of complex structural models. IEEE Transactions on Systems, Man, and Cybernetics, (5), 405-417.